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Abstract We consider an interacting-particle algorithm which is population-based like
genetic algorithms and also has a temperature parameter analogous to simulated annealing.
The temperature parameter of the interacting-particle algorithm has to cool down to zero in
order to achieve convergence towards global optima. The way this temperature parameter
is tuned affects the performance of the search process and we implement a meta-control
methodology that adapts the temperature to the observed state of the samplings. The main
idea is to solve an optimal control problem where the heating/cooling rate of the tempera-
ture parameter is the control variable. The criterion of the optimal control problem consists
of user defined performance measures for the probability density function of the particles’
locations including expected objective function value of the particles and the spread of the
particles’ locations. Our numerical results indicate that with this control methodology the
temperature fluctuates (both heating and cooling) during the progress of the algorithm to
meet our performance measures. In addition our numerical comparison of the meta-control
methodology with classical cooling schedules demonstrate the benefits in employing the
meta-control methodology.

Keywords Interacting-particle algorithm · Meta-control · Optimal control · Global
optimization · Simulated annealing · Cooling schedule

1 Introduction

In stochastic global optimization algorithms such as Simulated Annealing (SA) [8,24] and
Genetic Algorithms (GA) [22], the samplings are controlled by a set of parameters such as
the temperature parameter, the cross-over/mutation rate and the selection rate. The random
search process governing the samplings is the main determinant of the overall efficiency and
effectiveness of an algorithm. Thus the way the sampling parameters are tuned is a crucial
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component of the overall performance. While good parameter settings can be determined
prior to a run by trial and error and past experiences with a particular optimization problem;
we consider the possibility of adapting the parameters to the state of the samplings during
the progress of the algorithm.

We study this possibility for the temperature parameter of an interacting-particle algo-
rithm. The interacting-particle algorithm of this paper appears in different studies [5,13,16]
in similar forms and it has analogies to both SA and GA. Akin to SA, the temperature param-
eter of the interacting-particle algorithm has to cool down to zero. Instead of fixing a cooling
schedule prior to a run, we implement a meta-control methodology that dynamically deter-
mines the changes in the temperature parameter by adapting it to the state of the sampling
process. The methodology controls the samplings of the interacting-particle algorithm with
the temperature parameter to make the algorithm satisfy user-defined performance criteria.
The meta-control methodology for prescribing parameters of a deterministic optimization
algorithm was introduced by Kohn et al. [9]. Extending the idea to stochastic global optimi-
zation algorithms, in [14] we develop the theoretical aspects of a meta-control methodology
for the interacting-particle algorithm. This paper discusses the practical implementation of
the concept and reports results from numerical experiments.

The idea of adaptively setting the temperature parameter for SA has been previously
studied in [3,7,23]. Kolonko and Tran study weak convergence conditions for SA with an
adaptive temperature schedule that also allows heating [10]. Shen et al. [20] derives an ana-
lytical cooling schedule for SA that adapts to the observed function values. Munakata and
Nakamura [17] theoretically solve an optimal control problem to investigate optimal cooling
schedules for SA that maximize the probability of sampling the global optima. Their opti-
mal control problem requires knowledge of the whole state space and they obtain practical
cooling schedules for small scale traveling salesperson problems.

Our meta-control methodology treats the interacting-particle algorithm as a dynamic sys-
tem and utilizes an optimal control problem where the fractional change in the tempera-
ture parameter is the control variable. The interacting-particle algorithm moves N -particles
inside the feasible set according to random samplings of an N -particle exploration mech-
anism which we implement with the Hit-and-Run kernel [21] and an N -particle selection
mechanism which is controlled by the temperature parameter. The state of the control prob-
lem reflects the probability density function (p.d.f.) of the particles’ locations and the state
dynamics are characterized by the samplings of the N -particle mechanisms. The criteria of the
optimal control problem includes the user-defined performance measures for the interacting-
particle algorithm and they relate to the p.d.f. of the particles. Our performance criteria
includes the expected objective function value of the particles, the spread of the particles,
and the algorithm running time. The control problem assesses the evolution of the p.d.f.
of particles under different temperature parameters and provides a closed-loop feedback on
the temperature parameter to optimize our performance measures. In [14] we represent the
generic form of this control problem and do not investigate solution techniques. In this study
we develop a solution methodology for the optimal control problem and apply it in practice.

In Sect. 2 we state the interacting-particle algorithm and give an overview of the meta-
control methodology. In Sects. 3 and 4 we discuss the details of our control methodology. We
numerically investigate the behavior of our meta-control methodology under different param-
eter settings in Sect. 5. In Sect. 6 we numerically compare the meta-controlled interacting-
particle algorithm with the interacting-particle algorithm with classic cooling schedules and
also the SA algorithm with classic cooling schedules. Finally we conclude the paper in Sect. 7.
Appendix A outlines the parameter estimation step in our meta-control methodology.
Appendix B provides our least squares approach for estimating parameters of the control
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problem. Appendices C and D include the detailed results of our numerical experiments
from Sect. 5.

2 Interacting particle algorithm with meta-control of temperature

We address the following optimization problem with continuous decision variables

minimize f (x), subject to x ∈ � ⊂ R
d

where we require f (x) to be lower and upper bounded on �,−∞ < f (x) < +∞ for all
x ∈ �, but not necessarily differentiable. The feasible set � is assumed to be compact and
nonempty. We solve this problem with an interacting-particle algorithm which is population-
based like genetic algorithms and also has analogies to simulated annealing. In this study,
the interacting-particle algorithm is described in a form similar to the algorithm appearing
in [14] but with minor differences due to our current focus on implementation.

Interacting-particle algorithm:
Initialization: Sample N points yi

1, i = 1, . . . , N on � according to the initial p.d.f φ1

which is uniform on �. Set the temperature parameter γ0 to a positive value.

For τ = 1, 2, . . .

N-Particle Exploration: Move the particles to intermediate locations ŷi
τ ∈ � with the p.d.f.

E(yi
τ , ŷi

τ ), i = 1, . . . , N which is defined by the Markov kernel E .
Temperature Parameter Update: Update the temperature parameter, γτ = (1 + ετ )γτ−1

where ετ = K (Fτ ) and K (Fτ ) is a function that depends on the information vector Fτ gen-
erated by the interacting-particle algorithm up to time τ . The vector Fτ includes historical
particle locations, function values and temperature values.
N-Particle Selection: Move the particles i = 1, . . . , N to the intermediate locations ŷ j

τ

of particles j = 1, . . . , N and set yi
τ+1 ← ŷ j

τ with probability s j (γτ ) where s j (γτ ) =(
Gγτ (ŷ j

τ )∑N
k=1 Gγτ (ŷk

τ )

)
and Gγτ (y) = exp (− f (y)/γτ ).

In the initialization phase we determine the starting locations for N particles using the p.d.f φ1.
We use the uniform density on � for our initial samplings, i.e. φ1(x) = vol(�)−1,∀x ∈ �.
Given the locations of N particles, the interacting-particle algorithm moves the particles
inside the feasible set according to the N -particle exploration mechanism. The N -particle
exploration mechanism is independent of the objective function f (x). At this step given the
location of the particle i , yi

τ , we move the particle to an intermediate location ŷi
τ using a

Markov kernel E which is called the exploration kernel. We use the standard Hit-and-Run
kernel [21] on �. Hit-and-Run is a symmetric Markov kernel and its stationary measure is
the uniform distribution on � [11].

Following the N -particle exploration mechanism we have the N -particle selection mech-
anism which is dependent on the objective function. Given the set of intermediate locations
ŷi
τ , i = 1, . . . , N and the temperature parameter γτ , this mechanism moves particle i to the

location ŷ j
τ , j = 1, . . . , N with probability s j (γτ ) where

s j (γτ ) =
(

Gγτ (ŷ j
τ )∑N

k=1 Gγτ (ŷk
τ )

)
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and Gγτ (y) = exp (− f (y)/γτ ). This probability law favors intermediate locations with
lower objective function values and the temperature parameter controls the selectiveness
among the intermediate points. As γτ → 0 the particles become more concentrated around
the global optima. After the N -particle selection mechanism there may be multiple parti-
cles at the same locations and starting from these new locations we start the next iteration’s
N -particle exploration mechanism.

The interacting-particle algorithm has similarities to a genetic algorithm studied by Cerf
[5] for discrete optimization problems. The selection criteria in the N -particle selection
mechanism appears in a more generic form in [5] and the N -particle exploration phase is
analogous to a mutation step. However, the interacting-particle algorithm does not have the
typical cross-over step of a genetic algorithm. Cerf proves that with conditions on the muta-
tion kernel and the population size which depends on the landscape of the objective function,
the mean objective function value of the population asymptotically converges to the global
optima. Moral and Miclo [16] study the convergence properties of the interacting-particle
algorithm with infinite number of particles and logarithmic cooling schedule on discrete opti-
mization problems. The analysis again takes into account properties of the objective function.
Moral [15] analyzes the asymptotic behavior of a similar interacting-particle algorithm in R

d

with infinite number of particles. With certain conditions on the cooling schedule, exploration
kernel and the objective function he proves asymptotic convergence of the mean objective
function value of the particles to global optima.

In order to make the particles converge towards the global optima the temperature param-
eter is changed iteratively according to the following rule

γτ = (1+ ετ )γτ−1 (1)

where the variable ετ > −1 is the fractional change in the temperature. A negative ετ implies
cooling while a positive ετ means heating. We determine the value of this variable using the
feedback function K (Fτ ), which is a function of the information vector Fτ . This information
vector of past history includes iteration number, all the previously observed particle locations,
corresponding function values and temperature values, i.e.

Fτ = (y1, ŷ1, f (y1), f (ŷ1), . . . , yτ , ŷτ , f (yτ ), f (ŷτ ), γ0, . . . , γτ−1, τ )

where yτ =
(
y1
τ , . . . , yN

τ

)
and ŷτ =

(
y1
τ , . . . , yN

τ

)
are vectors in the product space �N rep-

resenting the locations of the N particles. We also refer to the function values at the locations
with vectors f (yτ ) =

(
f (y1

τ ), . . . , f (yN
τ )

)
and f (ŷτ ) =

(
f (ŷ1

τ ), . . . , f (ŷN
τ )

)
. Note that the

function K (Fτ ) defines a very generic temperature schedule. The cooling schedules which
depend on iteration count (e.g. geometric, logarithmic, exponential cooling schedules) can
be expressed in terms of the function K (Fτ ), as well as a more explicit function.

The idea that the temperature schedule can utilize the information supplied by the inter-
acting-particle algorithm appears in [13], however that study does not define this function
explicitly. In [14] we develop the theory of a meta-control methodology for defining the func-
tion K (Fτ ) that adapts to the information vector Fτ . The meta-control methodology regards
the interacting-particle algorithm as a discrete dynamic system that evolves iteratively with
the N -particle mechanisms. The main aspect of the methodology is to design a closed-loop
feedback on the temperature to make samplings satisfy user-defined performance measures.
The feedback is specified by the solution of an optimal control problem where the fractional
change in the temperature is the control variable. The state of the control problem depends
on the p.d.f. of the locations of the particles and the state dynamics are characterized by the
N -particle mechanisms.
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In this paper we use the theoretical ideas from [14] to develop a practical procedure for the
feedback function K (Fτ ). The procedure has two steps: the parameter estimation step which
uses the information vector Fτ to estimate the parameters of the optimal control problem;
and the control problem which provides the optimal fractional change in the temperature
value, ετ . The ideal control problem characterizes the evolution of the p.d.f. of the particles;
however it is very difficult to solve. We develop an approximation to the p.d.f. of the particles
and use an approximation method from [12] to obtain an auxiliary control problem which is
easier to solve. We postpone the statement of the control problem until Sect. 4. We use the
information Fτ to update the input parameters �(τ) for the auxiliary optimal control prob-
lem. The meta-control methodology considers a finite time window into the future, using the
concepts of receding-horizon control [2]. The control problem predicts the evolution of the
p.d.f. of the particles for Tc future iterations. We reserve τ to refer to the iterations in the
interacting-particle algorithm and use t to refer to the future iterations in the optimal control
problem. The control problem is solved once per iteration of the interacting-particle algo-
rithm to determine the optimal fractional change in the temperature value for the current and
subsequent Tc iterations that optimize the user-defined criteria for the p.d.f. of the particles.

To summarize, the procedure for the function K (Fτ ) is,

The function K(Fτ ):
Parameter Estimation: Use Fτ to estimate the input parameters �(τ) for the optimal control
problem.
Control Problem: Solve the control problem with �(τ) to obtain the optimal fractional
change in temperature for t = 0, . . . , Tc where t = 0 denotes the current iteration and
t = Tc denotes Tc iterations later.
Set K(Fτ ): Set the value of the function K (Fτ ) using the optimal control for t = 0.

The control problem is defined in the following sections after we introduce the state
variable of this control problem and discuss its expected dynamics.

3 State of the interacting-particle algorithm and its dynamics

The samplings of the interacting-particle algorithm depend on the locations of the particles
which change with the N -particle exploration and N -particle selection mechanisms. We take
into account the p.d.f. of the locations of the particles and how it evolves with the N -particle
mechanisms. We approximate the p.d.f. of the location of the particles using a sequence of
orthonormal polynomials as discussed in [14,18]. For the implementation we use the Legen-
dre polynomials defined over a box � in R

d ,� = [l1, u1] × · · · × [ld , ud ], where � ⊆ �.
The Legendre polynomials define an orthonormal polynomial sequence and form a complete
basis of the space of square integrable functions defined over �, L2(�) [6].

A multivariate Legendre polynomial in R
d is defined as the multiplication of single variate

Legendre polynomials [6]. Let Pα(x) with x = (x1, . . . , xd)T denote a multivariate Legendre
polynomial over the d dimensional box � = [l1, u1] × · · · × [ld , ud ], then

Pα(x) = qυ1(x1)qυ2(x2) · · · qυd (xd) (2)

where qυk (xk), k = 1, . . . , d are single variate Legendre polynomials over [lk, uk] and α =
(υ1, υ2, . . . , υd) is the vector indexing the polynomial. For any k, k = 1, . . . , d , the single
variate Legendre polynomial qυk (xk) where xk ∈ [lk, uk] and υk = 0, 1, . . . is said to have
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degree υk . The first few polynomials, υk = 0, 1, 2 and 3, are defined as

q0(xk) = 1

q1(xk) =
(
uk − lk)

−1(2xk − uk − lk
)

q2(xk) = 1

2

(
3

(
(uk − lk)

−1(2xk − uk − lk)
)2 − 1

)

q3(xk) = 1

2

(
5

(
(uk − lk)

−1(2xk − uk − lk)
)3 − 3(uk − lk)

−1(2xk − uk − lk)
)

.

Traditionally the single variate Legendre polynomial qυk (xk) is defined over [−1, 1], the
bounds lk and uk appear in the polynomials above in order to scale xk to a point inside
[−1, 1].

Now let Pα(x), α ∈ I be the sequence of multivariate Legendre polynomials as defined in
(2) where I is the index set of the polynomials. We denote the cardinality of the index set I
with Q, i.e. Q is the number of multivariate Legendre polynomials, |I | = Q. When Q goes
to infinity we have a complete orthonormal basis of the square integrable functions over �.
However we use a finite number of orthonormal polynomials for practical purposes. Given
the locations of the particles y1

τ , . . . , yN
τ , we approximate the p.d.f. of the particle locations

with a function 
τ (x) as follows,


τ (x) =
∑
α∈I

cα(τ )Pα(x),

where the coefficients cα(τ ) are functions of yτ ;

cα(τ ) = 1

N

N∑
i=1

Pα(yi
τ ), α ∈ I. (3)

Similarly we can estimate a p.d.f. for the intermediate particle locations ŷ1
τ , . . . , ŷN

τ . This
p.d.f. corresponds to the density of the particles after the N -particle exploration step. In this
case we denote the coefficients by ĉα where

ĉα(τ ) = 1

N

N∑
i=1

Pα(ŷi
τ ), α ∈ I. (4)

When we impose the constraint that
∫
�


τ (x)dx = 1 then 
τ (x) defines a p.d.f. [18].
Because we do not use 
τ (x) directly for samplings, we do not require the function 
τ (x)

to satisfy such a condition.
The function 
τ (x) gives us partial information about the p.d.f. of the particles. The cur-

rent state of the function 
τ (x) and its evolution due to movement of the particles are directly
reflected in the coefficient values cα(τ ) and their evolution. We represent the coefficients as
a vector c(τ ) = (cα(τ ))α∈I and let the vector c(τ ) characterize the current state of the
interacting-particle algorithm. By looking at how the vector c(τ ) evolves we obtain informa-
tion about the evolution of the p.d.f. of the particles.

We have shown in [14] that the evolution of c(τ ) has stochastic dynamics which involves
a deterministic part and a random term whose expectation is zero. The stochastic dynamics
leads to a stochastic optimal control problem which is difficult to solve directly. In this study
we ignore the randomness in the dynamics by utilizing the concept of certainty equivalence
[4] which takes into account the expected values of c(τ + t), t = 0, 1, . . . with respect to the
information Fτ . As we will see the certainty equivalence principle leads to a deterministic
optimal control problem.
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The evolution of the p.d.f. of the particles’ locations and the impact of temperature on
this p.d.f. is captured through the evolution of the coefficients c(τ ). By predicting the future
values of c(τ ) we can predict the evolution of the p.d.f. of the particles’ under different
temperature values. Let c(τ + t) and ĉ(τ + t) be the coefficients at locations yτ+t and
ŷτ+t at iterations τ + t, t = 0, 1, . . . respectively. Let the vectors m(t) = (mα(t))α∈I and
m̂(t) = (

m̂α(t)
)
α∈I be the expectations of c(τ + t) and ĉ(τ + t) for t = 0, 1, . . . with respect

to the information vector Fτ , i.e. m(t) = E(c(τ + t)|Fτ ) and m̂(t) = E(ĉ(τ + t)|Fτ ). Note
that the information Fτ includes realizations of the latest locations yτ and ŷτ , thus we have
m(0) = E(c(τ )|Fτ ) = c(τ ) and m̂(0) = E(ĉ(τ )|Fτ ) = ĉ(τ ).

By Theorem 6 of [14] we have the following relationship between the vectors m(t) and
m̂(t)

m̂(t) = Am(t), t = 0, 1, . . . (5)

where m(0) = c(τ ) and A = (aαβ) is a Q × Q symmetric matrix with

aαβ =
∫

�

∫
�

E(x, y)Pα(x)Pβ(y)dxdy, α ∈ I, β ∈ I. (6)

Once the particles move from the intermediate locations ŷτ+t to yτ+t+1 with the N -parti-
cle selection mechanism, the vector ĉ(τ + t) changes to c(τ + t+1). For notational purposes
we denote the temperature value at iteration τ+ t−1 with γ (t), i.e. γ (t) = γτ+t−1. Given Fτ

we have the initial value γ (0) = γτ−1. We make this shift in the time index of the temperature
parameter in order to have a consistent indexing in the dynamics of our control problem. We
also move the time subscripts into parenthesis for notational purposes. Then by Theorem 6
of [14], the vectors m(t + 1) and m̂(t) satisfy

m(t + 1) = B (γ (t + 1)) m̂(t)

pT B (γ (t + 1)) m̂(t)
, t = 0, 1, . . . (7)

where m̂(0) = ĉ(τ ), B(γ (t)) = (
bαβ(γ (t + 1))

)
is a Q × Q symmetric matrix with

bαβ(γ (t + 1)) =
∫

�

exp (− f (x)/γ (t + 1)) Pα(x)Pβ(x)dx, α ∈ I, β ∈ I (8)

and the vector p ∈ R
Q is defined as

p =
(∫

�

Pα(x)dx

)
α∈I

. (9)

The denominator of (7) equals the normalizing term
∑N

k=1 Gγτ+t (ŷk
τ+t ) in the definition of

s j (γτ+t ). We use this fact when we are estimating matrix B(·) and the vector p. Now substi-
tuting the right hand side of Eq. 5 into 7 and also letting γ (t + 1) = (1+ ε(t)) γ (t) where
ε(t) is the change in the temperature at iteration τ + t , we get the following dynamics for
the vector m(t),

m(t + 1) = B ((1+ ε(t)) γ (t)) Am(t)

pT B ((1+ ε(t)) γ (t)) Am(t)
, t = 0, 1, . . . (10)

with m(0) = c(τ ). Equation 10 as proven in [14] implies that the expectation of the vector
c(·) changes nonlinearly with the symmetric matrices A, B(·) and the vector p. The entries
of A, B(·) and p are analytically defined by Eqs. 6, 8 and 9. However, instead of using these

123



336 J Glob Optim (2009) 43:329–356

expressions we estimate the matrices numerically using the provided information Fτ , see
Appendix A.

The dynamics for m(t) enable us to predict the changes in the p.d.f. of the particles due
to temperature changes as given by ε(t). In the next section we formulate the criteria for the
p.d.f. of the particles as functions of m(t) and represent our optimal control problem.

4 Algorithmic criterion and the optimal control problem

At each iteration τ the meta-control methodology determines the function K (Fτ ) by solving
an optimal control problem where m(t) and the temperature γ (t) are state variables and ε(t)
is the control variable. This control problem is generically represented in [14] as a discrete
stochastic optimal control problem. Here, as we assume certainty equivalence, the problem
takes the following deterministic form,

Control Problem 1

min
ε(t)∈[εmin,εmax]

t=0,...,Tc

�(m(Tc + 1), γ (Tc + 1)) (11)

subject to

(
m(t + 1)

γ (t + 1)

)
=

⎛
⎝ B ((1+ ε(t))γ (t)) Am(t)

pT B ((1+ ε(t))γ (t)) Am(t)
(1+ ε(t)) γ (t)

⎞
⎠ , t = 0, . . . , Tc (12)

(
m(0)

γ (0)

)
=

(
c(τ )

γτ−1

)
(13)

where c(τ ) = E(c(τ )|Fτ ) and γτ−1 are given. Two forms of the criteria � are defined in (18)
and (19).

At iteration τ this optimal control problem considers the evolution of m(t) and the tem-
perature γ (t) for the next Tc iterations and determines ε(0), . . . , ε(Tc) that optimizes the
objective functional given by �(·). We assume the control variable belongs to the closed
bounded set [εmin, εmax] where εmin < 0 and εmax ≥ 0.

In order to define the objective functional �(·) we express the user-defined criteria for the
samplings as a function of m(t). The first criterion and the most important in optimization
is the expectation of the objective function. Let fτ and f̂τ be the average objective function
value of the particles when they are located at yτ and ŷτ respectively,

fτ = 1

N

N∑
i=1

f (yi
τ ), f̂τ = 1

N

N∑
i=1

f (ŷi
τ ). (14)

As we have shown in [14] the vectors c(τ ) and ĉ(τ ) estimated using (3) and (4) relate to fτ
and f̂τ as follows

fτ = FT c(τ ), f̂τ = FT ĉ(τ ) (15)

where F = (Fα)α∈I ∈ R
Q with

Fα =
∫

�

f (x)Pα(x)dx, α ∈ I. (16)
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Instead of calculating the vector F from the integral in Eq. 16 we estimate it using our past
observations, see (33). Equation 15 establishes a linear relationship between the vectors c(τ ),
ĉ(τ ) and the value fτ . Given F and the expected future state of the interacting-algorithm
m(t), we can predict the average objective function value of the particles in the subsequent
iterations, i.e. fτ+t = FT m(t).

The second criteria relates to the risk involved with the current p.d.f. of the particles’
locations. By common sense when the locations of the particles have a wider spread over
the feasible set, the particles can explore a wider region. However when the particles are
concentrated at a single point; the p.d.f. of the particle locations has most of its mass around
that point; the immediate exploration region is narrower and this can lead to getting stuck in
a local optima and missing the global optima. The spread of the particles over � is maximum
when they are uniformly distributed on � and we consider the uniform distribution as a risk
averse distribution. Our second criteria measures the square deviations of the current p.d.f.
of the particles from the uniform distribution and it has the following form

∑
α∈I

(mα(t)− cuni f
α )2 =

(
m(t)− cuni f

)T
IQ

(
m(t)− cuni f

)
, (17)

where cuni f
α is estimated by Eq. 3 with the initial particle locations {yi

1} which are uniformly
sampled and IQ is the Q× Q identity matrix. Unless the objective function f (x) is constant
over � there is a trade off between minimizing the expected function value and minimiz-
ing the square deviations from the uniform distribution. As the p.d.f. puts more of its mass
towards the global optima the deviation from the uniform distribution increases.

When we have multiple criteria for the interacting-particle algorithm one approach is to
take the weighted linear combination of all the criteria. Considering the expected objective
function value of the particles and the spread of the particles we can construct the following
functional which is quadratic in terms of m(t),

�(m(t), γ (t)) = ω1 FT m(t)+ ω2

(
m(t)− cuni f

)T
IQ

(
m(t)− cuni f

)
(18)

where ωi , i = 1, 2 (ωi > 0 and
∑

ωi = 1) represents the weight we give to each criteria.
We also have another objective functional alternative which is motivated by Sharpe’s ratio

[19] which is used in finance for evaluating investments. It is a reward to risk (variability)
ratio to specify the performance of a random return. In our case we interpret the return from
the iteration τ of the interacting-particle algorithm as the difference between the average
objective function value fτ and the average objective function value at the beginning of the
algorithm, f1. Because the initialization p.d.f. is uniform density on �, f1 corresponds to
the expectation of f (x) with respect to uniform sampling. On the other hand the risk is the
square deviations from the uniform distribution as it is represented in Eq. 17. With these
interpretations we get the following criteria

�(m(t), γ (t)) = FT m(t)− f1

ω3
(
m(t)− cuni f

)T
IQ

(
m(t)− cuni f

) (19)

where ω3 ∈ (0, 1] is a parameter that shows what percentage of the risk we consider.
We would like to solve Control Problem 1 with �(·) as in (18) and (19) which is a difficult

task; the control variable ε(t) is implicit inside the matrix B(·) whose terms are given by
Eq. 8. However, we can use a perturbation method to develop a discrete quadratic control
problem that approximates the solution [12].
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Assume that at iteration τ we have the optimal solution to the previous iteration’s optimal
control problem, i.e. ε∗(0), . . . , ε∗(Tc). Using the previous solution we define a nominal
solution to the current problem as follows,

ε̄(0) = ε∗(1), ε̄(1) = ε∗(2), . . . , ε̄(Tc − 1) = ε∗(Tc), ε̄(Tc) = ε∗(Tc).

The known feasible solution ε̄(t) implies the nominal state trajectories m̄(t) and γ̄ (t) such
that

(
m̄(t + 1)

γ̄ (t + 1)

)
=

⎛
⎝ B ((1+ ε̄(t))γ̄ (t)) Am̄(t)

pT B ((1+ ε̄(t))γ̄ (t)) Am̄(t)
(1+ ε̄(t)) γ̄ (t)

⎞
⎠ , t = 0, . . . , Tc

(20)(
m̄(0)

γ̄ (0)

)
=

(
E(c(τ )|Fτ )

γτ−1

)

Next we introduce the perturbations δε+(t) ≥ 0 and δε−(t) ≥ 0 around the nominal
solution ε̄(t). The variable δε+(t) indicates how much we increase ε̄(t) and δε−(t) indicates
how much we decrease it. The difference δε+(t)− δε−(t) gives us how much we perturbed
the trajectory ε̄(t). We use two separate perturbations, for heating and cooling, because the
change affects the matrix B(·) asymmetrically which is important when we are numerically
estimating the derivatives of B(·) in Appendix A.

When we perturb ε̄(t) with δε+(t) and δε−(t), we also create perturbations of the states
m(t) and γ (t) around the nominal trajectories m̄(t) and γ̄ (t). We let δm(t) be the pertur-
bation around m̄(t), and δγ+(t) be the positive perturbation around γ̄ (t) due to δε+(t),
and δγ−(t) be the negative perturbation around γ̄ (t) due to δε−(t). Our goal is to obtain
the perturbations δε∗+(t) and δε∗−(t) such that the new solution defined as ε∗(t) = ε̄(t) +
δε∗+(t)−δε∗−(t), t = 0, . . . , Tc improves on the objective functionals. With the perturbations
δε∗+(t) and δε∗−(t), the states deviate from m̄(Tc + 1) and γ̄ (Tc + 1) by δm∗(Tc + 1) and
δγ ∗(Tc+1) = δγ ∗+(Tc+1)−δγ ∗−(Tc+1), and we would like these perturbations to decrease
the performance criteria at the terminal time Tc, i.e.

�
(
m̄(Tc + 1)+ δm∗(Tc + 1), γ̄ (Tc + 1)+ δγ ∗(Tc + 1)

)
≤ �(m̄(Tc + 1), γ̄ (Tc + 1)) .

To obtain the perturbation δε∗+(t) − δε∗−(t) that gives δm∗(Tc + 1) and δγ ∗(Tc + 1) and
optimizes the reduction in the objective functional �(·), we utilize an auxiliary control prob-
lem where δε+(t) and δε−(t) are control variables and δm(t), δγ+(t), δγ−(t) are the state
variables.

To derive the dynamics of the auxiliary control problem we take the first order Taylor
expansion of the dynamics in Eq. 12 around m̄(t), γ̄ (t) and ε̄(t) with respect to variables
m(t), γ (t) and ε(t), however we separate the right and left derivatives for γ (t). For ease in
notation we refer to the dynamics of m(t) and γ (t) in Eq. 12 with the functions h1 and h2

respectively i.e. h1 = h1(m(t), γ (t), ε(t)) = m(t + 1) and h2 = h2(γ (t), ε(t)) = γ (t + 1).
Note that the function h1 has three arguments m(t), γ (t) and ε(t), and h2 has two arguments
γ (t), ε(t). With this notation we get
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(
m̄(t + 1)

γ̄ (t + 1)

)
+

(
δm(t + 1)

δγ+(t + 1)− δγ−(t + 1)

)

=
(

h1

h2

)
+

⎛
⎜⎝

∂h1

∂m

∂h1

∂γ+
− ∂h1

∂γ−
0

∂h2

∂γ+
− ∂h2

∂γ−

⎞
⎟⎠

⎛
⎝ δm(t)

δγ+(t)
δγ−(t)

⎞
⎠

+
⎛
⎜⎝

∂h1

∂ε+
− ∂h1

∂ε−
∂h2

∂ε+
− ∂h2

∂ε−

⎞
⎟⎠

(
δε+(t)
δε−(t)

)
, t = 0, . . . , Tc

where the variables δγ+(t) ≥ 0 and δγ−(t) ≥ 0 represent the deviations from γ̄ (t) in the
positive and negative directions respectively and the functions h1 and h2 and their partial
derivatives are evaluated at m̄(t), γ̄ (t), ε̄(t). Similarly δε+(t) ≥ 0 and δε−(t) ≥ 0 stand for
the amount of positive and negative deviations from ε̄(t). We associate δγ+(t) with δε+(t)
and δγ−(t) with δε−(t), as an increase in ε̄(t) means a positive deviation from γ̄ (t), while a
decrease in ε̄(t) implies a negative deviation from γ̄ (t).

From (20) we know that the first term on the left hand side of the above expression equals
the first term on the right hand side, thus we can cancel these terms. Next we rearrange
the matrices to separate the states δγ+(t) and δγ−(t), obtaining the following dynamics for
δm(t), δγ+(t) and δγ−(t),

⎛
⎝ δm(t + 1)

δγ+(t + 1)

δγ−(t + 1)

⎞
⎠ = D1(t)

⎛
⎝ δm(t)

δγ+(t)
δγ−(t)

⎞
⎠+ D2(t)

(
δε+(t)
δε−(t)

)
, t = 0, . . . , Tc (21)

where

D1(t) =

⎛
⎜⎜⎜⎜⎜⎝

∂h1

∂m

∂h1

∂γ+
− ∂h1

∂γ−
0

∂h2

∂γ+
0

0 0
∂h2

∂γ−

⎞
⎟⎟⎟⎟⎟⎠

, D2(t) =

⎛
⎜⎜⎜⎜⎜⎝

∂h1

∂ε+
− ∂h1

∂ε−
∂h2

∂ε+
0

0
∂h2

∂ε−

⎞
⎟⎟⎟⎟⎟⎠

(22)

and partial derivatives are evaluated at m̄(t), γ̄ (t) and ε̄(t). The function h1 depends on
the parameters γ (t) and ε(t) through the matrix B ((1+ ε(t))γ (t)) whose entries are given
by (8). Thus, the partial derivatives of h1 with respect to γ (t) and ε(t) requires the partial
derivatives of the matrix B ((1+ ε(t))γ (t)) with respect to these variables. Let the matrices
�γ+B, �γ−B, �ε+B and �ε−B denote the partial left and right derivatives of the entries
of the matrix B ((1+ ε(t))γ (t)) with respect to γ and ε evaluated at ε̄(t) and γ̄ (t). For
simplicity in notation also denote the matrix B ((1+ ε̄(t))γ̄ (t)) with B, then the entries of
the matrices D1(t) and D2(t) are explicitly defined as follows,

∂h1

∂m
= B A

pT B Am̄(t)
− B ApT B A(

pT B Am̄(t)
)2

∂h1

∂γ+
= �γ+B Am̄(t)

pT B Am̄(t)
− B Am̄(t)pT �γ+B Am̄(t)(

pT B Am̄(t)
)2
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∂h1

∂γ−
= �γ−B Am̄(t)

pT B Am̄(t)
− B Am̄(t)pT �γ−B Am̄(t)(

pT B Am̄(t)
)2

∂h2

∂γ+
= 1+ ε̄(t),

∂h2

∂γ−
= 1+ ε̄(t)

∂h1

∂ε+
= �ε+B Am̄(t)

pT B Am̄(t)
− B Am̄(t)pT �ε+B Am̄(t)(

pT B Am̄(t)
)2

∂h1

∂ε−
= �ε−B Am̄(t)

pT B Am̄(t)
− B Am̄(t)pT �ε−B Am̄(t)(

pT B Am̄(t)
)2

∂h2

∂ε+
= γ̄ (t),

∂h2

∂ε−
= γ̄ (t).

By (21) we have the dynamics of the states δm(t), δγ+(t) and δ−γ (t). The initial condi-
tions of these states are ⎛

⎝ δm(0)

δγ+(0)

δγ−(0)

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ . (23)

Due to the perturbations the value of the objective functional at Tc+ 1 change and we can
approximate this change by a second order Taylor expansion of �(m(t), γ (t)) at m̄(Tc + 1)

and γ̄ (Tc + 1). Let δγ (Tc + 1) = δγ+(Tc + 1)− δγ−(Tc + 1) then

�(m̄(Tc + 1)+ δm(Tc + 1), γ̄ (Tc + 1)+ δγ (Tc + 1))

−�(m̄(Tc + 1), γ̄ (Tc + 1))

=
⎛
⎝ δm(Tc + 1)

δγ+(Tc + 1)

δγ−(Tc + 1)

⎞
⎠

T

C1

⎛
⎝ δm(Tc + 1)

δγ+(Tc + 1)

δγ−(Tc + 1)

⎞
⎠+ C2

⎛
⎝ δm(Tc + 1)

δγ+(Tc + 1)

δγ−(Tc + 1)

⎞
⎠ (24)

where

C1 = 1

2

⎛
⎜⎜⎜⎜⎝

∂2�
∂m2

∂2�
∂m∂γ+ −

∂2�

∂m∂γ−
∂2�

∂γ+∂m
∂2�

∂γ 2+
− ∂2�

∂γ+∂γ−
− ∂2�

∂γ−∂m − ∂2�
∂γ−∂γ+

∂2�

∂γ 2−

⎞
⎟⎟⎟⎟⎠ , C2 =

⎛
⎜⎝

∂�
∂m
∂�
∂γ+
− ∂�

∂γ−

⎞
⎟⎠

T

. (25)

All the partial derivatives of �(m(t), γ (t)) in the definition of C1 and C2 are evaluated at
m̄(Tc + 1) and γ̄ (Tc + 1) which we did not indicate above for ease in notation.

We would like δε+(t) and δε−(t) to minimize the left hand side of expression (24); we
want the optimal reduction in the terminal cost. For this we can solve an optimal control
problem where δε+(t) and δε−(t) are the control variables and the state variables are δm(t),
δγ+(t) and δγ−(t). These states follow the dynamics in Eqs. 21 and 23. The objective to
optimize is the reduction in the terminal cost �(·) which is approximated in (24). Because in
the original problem ε(t) is box constrained, i.e. ε(t) ∈ [εmin, εmax], the perturbations δε+(t)
and δε−(t) should belong to the set [0, δε+max(t)] and [0, δε−max(t)], such that

δε+max(t) = εmax − ε(t), δε−max(t) = ε(t)− εmin. (26)

This derivation leads to a discrete quadratic optimal control problem which has the
following form,
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Control Problem 2

min
0≤δε+(t)≤δε

+
max(t)

0≤δε−(t)≤δε
−
max(t)

t=0,...,Tc

⎛
⎝ δm(Tc + 1)

δγ+(Tc + 1)

δγ−(Tc + 1)

⎞
⎠

T

C1

⎛
⎝ δm(Tc + 1)

δγ+(Tc + 1)

δγ−(Tc + 1)

⎞
⎠+ C2

⎛
⎝ δm(Tc + 1)

δγ+(Tc + 1)

δγ−(Tc + 1)

⎞
⎠ (27)

subject to⎛
⎝ δm(t + 1)

δγ+(t + 1)

δγ−(t + 1)

⎞
⎠ = D1(t)

⎛
⎝ δm(t)

δγ+(t)
δγ−(t)

⎞
⎠+ D2(t)

(
δε+(t)
δε−(t)

)
, t = 0, . . . , Tc (28)

⎛
⎝ δm(0)

δγ+(0)

δγ−(0)

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ (29)

where D1(t) and D2(t) are defined by (22), C1 and C2 are defined in (25), and δε+max(t) and
δε−max(t) are given in (26).

The matrices D1(t), D2(t), C1 and C2 have to be estimated to solve this control problem.
The notation �(τ) used in Sect. 2 represents all these matrices, i.e. �(τ) = {C1, C2, D1(t),
D2(t) for t = 0, . . . , Tc} and the parameter estimation step in the definition of the function
K (Fτ ) is responsible for this task. To estimate these matrices it is necessary to calculate the
matrices A, B, �γ+B, �γ−B, �ε+B, �ε−B and the vectors p and F . We utilize the new
information Fτ and use a least squares approach, see Appendix A.

Once we have D1(t), D2(t), C1 and C2, we solve the control problem to obtain δε∗+(0),

δε∗−(0), . . . , δε∗+(Tc), δε
∗−(Tc). In order to solve the control problem we structure it as a

standard constrained quadratic optimization problem. Using the optimal solution we set
ε∗(t) = ε̄(t)+ δε∗+(t)− δε∗−(t) for t = 0, . . . , Tc. In the interacting-particle algorithm, we
set

ετ = K (Fτ ) = ε∗(0) = ε̄(0)+ δε∗+(0)− δε∗−(0)

and implement the N -particle selection mechanism with the new temperature γτ = (1 +
ετ )γτ−1.

In the following section we implement the function K (Fτ ) defined with our meta-control
methodology on test problems.

5 Numerical results

We have implemented the meta-control methodology and applied it to several test problems
which are defined in R

d . We have chosen a set of test problems from [1] which include the
hardest ones and the ones defined in 10 and 20 dimensions. For defining the multi-variate
Legendre polynomials Pα(x), we use up to 5th order single variate Legendre polynomials per
dimension, i.e. 0 ≤ υk ≤ 5 for k = 1, . . . , d . We solve Control Problem 2 with the Matlab
quadratic programming function quadprog(·), and the parameters are estimated using the
Matlab least squares function lsqr(·).

Initially we would like to illustrate the behavior of the meta-control methodology for
different weights (ω1, ω2, ω3) in the control objectives. For the following results we set the
horizon of the control problem to Tc = 10, thus the meta-control methodology assesses
the state of the samplings for the subsequent 10 iterations. The initial temperature is set to
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γ0 = 2 for all problems. The bounds for the control variable ε(t) are set to εmin = −0.05
and εmax = 0.05.

In Figs. 3 and 6 we use the normalized mean function values of the particles, defined as

gτ = fτ − f ∗

fw − f ∗
= 1

N

N∑
i=1

f (yi
τ )− f ∗

fw − f ∗
. (30)

where fw is the worst function value observed during a run and f ∗ = minx∈� f (x) is the
minimum value of the objective function over �. We normalize the mean function value
of the particles to make the results on different functions comparable and consistent. With
this normalization gτ is scaled between zero and one. During the course of the algorithm, as
the particles concentrate around the global optima, we expect gτ → 0. We also report the
incumbent normalized mean function values of the particles in the tables of Appendices C
and D denoted by g∗τ where

g∗τ = min
i=1,...,τ

gi . (31)

We first apply the methodology on the centered 20-dimensional sinusoidal problem which
is stated in [1]. We chose the centered 20-dimensional sinusoidal problem as it was also used
in our previous study of the interacting-particle algorithm in [13] and it is also used by other
studies for SA and GA in [1] and [20]. We use the objective criterion in (18) and set ω1 and
ω2 to different values. In addition we set the number of particles N to 1,000. This number
of particles is chosen arbitrarily and we have chosen a large number of particles to reduce
the noise in the observations of mean function values and coefficients of the parameters. In
this section we are investigating the affects of ω1, ω2 and ω3 on the algorithm rather than
the number of particles. For each parameter setting we have implemented 50 independent
runs. We have stopped a run when the normalized function value gτ is less than the threshold
0.0005, i.e. gτ ≤ 0.0005, or when the maximum number of 200 iterations is reached. This
implies that the maximum number of function evaluations is 200,000 and the control problem
is solved a maximum of 200 times. If a run stops at an iteration s < 200 due to the former
stopping rule we assume gτ = gs , ετ = 0 and γτ = γs , ετ = 0 and γτ = γs for the remaining
iterations τ > s.

When ω1 = 1 and ω2 = 0 the control problem only considers the expectation of the objec-
tive function and the temperature cools down very fast as shown in Fig. 1. The graph shows the
progress of the temperature value averaged over 50 independent runs. As we increase ω2 to
0.5 and 0.75 we get the other results shown in Fig. 1. The results for (ω1, ω2) = (0.75, 0.25)

are omitted from Figs. 1, 2, 3 and 4 as they resemble the results for the case (ω1, ω2) = (1, 0).
When ω1 = 1 and ω1 = 0.75 the main objective is to optimize the mean function value of
the particles and the temperature cools down to zero quickly. In these cases the runs termi-
nate prior to the 200 iterations limit as gτ becomes less than 0.0005. However, we plot the
graphs up to 200 iterations by assuming the temperature stays constant after the runs stop.
On the other hand observe that when ω1 = 0.5 (ω2 = 0.5) and ω1 = 0.25 (ω2 = 0.75) the
temperature never cools down to zero. The risk of cooling dominates the benefit of a low
expected objection function value and the temperature stabilizes around 0.6. In these cases
the runs terminate due to the maximum iteration limit.

In Fig. 2 we show the average ετ as given by our meta-control methodology. One can see
that for ω1 = 1, ετ goes to its lower bound which is −0.05. In this case all of the 50 runs
stop between 100 and 150 iterations. As ω1 decreases, ω2 increases and ετ starts to fluctuate
and we begin to see positive values of ετ which implies heating in the temperature. When
ω2 = 0.5 and ω2 = 0.75 we observe that the runs do not stop before 200 iterations.
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Fig. 1 Average temperature γτ

over 50 independent runs for the
20-dimensional centered
sinusoidal problem using the
control objective in (18) with
(ω1, ω2) = (1, 0), (0.5, 0.5) and
(0.25, 0.75)
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Fig. 2 Average fractional
change in temperature ετ over 50
independent runs for the
20-dimensional centered
sinusoidal problem using the
control objective in (18) with
(ω1, ω2) = (1, 0), (0.5, 0.5) and
(0.25, 0.75)
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In Figs. 3 and 4 we depict the progress of normalized mean function values and risk aver-
aged over 50 runs with different ω1 and ω2. The tradeoff between mean function value and
the risk is evident from these figures. Note that in the last parameter setting when ω1 = 0.25
and ω2 = 0.75 the particles do not converge towards the global optima because of the high
weight we give to the risk.

In order to demonstrate the behavior of the interacting-particle algorithm further, we apply
the methodology with objective criterion in (19) to the shifted sinusoidal problem which also
appears in [1,13,20]. The centered sinusoidal problem was relatively easy to solve for the
interacting-particle algorithm and it is not very sensitive to the parameter settings so in order
to make the problem harder this time we shift the location of the global optima by π/3 and
we increase the number of particles to N = 2,000. The number of particles is again set
arbitrarily and our goal here is not to investigate the affects of N to our results. Once more
we do 50 independent runs on the shifted sinusoidal problem and we stop each run when gτ

is less than the threshold 0.0005 or when 200 iterations limit is reached.
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Fig. 3 Average normalized
mean function value gτ over 50
independent runs for the
20-dimensional centered
sinusoidal problem using the
objective in (18) with
(ω1, ω2) = (1, 0), (0.5, 0.5) and
(0.25, 0.75)
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Fig. 4 Average square deviations
from uniform distribution on �

(risk) over 50 independent runs
for the 20-dimensional centered
sinusoidal problem using the
objective in (18) with
(ω1, ω2) = (1, 0), (0.5, 0.5) and
(0.25, 0.75)
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In this case we get more interesting results. As we increase ω3 from 0.25 towards 1 the
temperature starts to heat and cool more often as shown in Fig. 5. We omit the results for
ω3 = 0.75 from this figure as they are similar to ω3 = 1. For better comparison we visualize
the normalized mean function values of the particles in Fig. 6. In all parameter cases not
all of the 50 runs were successful. However, we observe an improvement in the final mean
objective function value due to increasing the risk factor. This case illustrates the importance
of adding the risk in our criteria. When we only consider the mean objective function value
of the particles, the cooling may be too fast. By considering the spread of the particles more,
we are able to achieve better function values.

We extend our analysis to a larger problem set with 18 test problems from [1] where we
chose the hardest problems or the ones in 10 and 20 dimensions. For each parameter setting
and each problem we do 50 independent runs with the same stopping criteria as above, i.e.
we stop when gτ ≤ 0.0005 or 200 iterations is reached. Once again if a run stops at iteration
s < 200 we set gτ = gs for the remaining iterations τ > s. For these tests we report the
incumbent gτ values after 25, 100, 150 and 200 iterations as defined in (31). Again, we aver-
age g∗τ over 50 independent runs. Note that the interacting-particle algorithm does N function
evaluations for each iteration, so the number of function evaluations after τ iterations equals
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Fig. 5 Average temperature over
50 independent runs for the
20-dimensional shifted sinusoidal
problem using the objective in
(19) with ω3 = 1, 0.5 and 0.25
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Fig. 6 Average normalized
mean function value gτ over 50
independent runs for the
20-dimensional shifted sinusoidal
problem using the objective in
(19) with ω3 = 1, 0.75, 0.5 and
0.25
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τ N . The number of particles N is chosen arbitrarily by trial and error and it is higher for
difficult problems.

Appendix C gives the results of our numerical test with objective criterion (18). For some
problems we observe the behavior illustrated in Fig. 3 and increasing ω2 results in not con-
verging or slower convergence towards the global optima. However for some of the test
problems increasing ω2 leads to better outcomes.

For 5 and 10 dimensional Michalewicks problems we obtain an improvement in the final
average objective function of the particle by increasing ω2 from 0 to 0.75. For these test prob-
lems we obtained the best outcome when ω1 = 0.75 and ω2 = 0.25. We observe analogous
results for 10 and 20 dimensional shifted sinusoidal problems. The 10 dimensional Shekel’s
foxholes problem shows the most sensitivity to parameters of the control problem. For this
problem we observe significant improvement in the final objective function of the particles
by increasing ω2.

Appendix D reports the test results with the objective criterion in (19). Our results indi-
cate that increasing ω3 to 1 has positive effects or no effect for all test problems. For the
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Michalewicks problems, shifted sinusoidal problems and the Shekel’s foxholes problem we
see improvements in the results as we increase ω3 towards 1. For the other test problems
increasing ω3 = 1 does not affect final convergence towards the global optima.

With the objective criterion (19) we actually get more robust results than with the criterion
(18). The advantage of the criterion in (19) is that it adjusts the scales of reward and risk by
taking their ratio.

6 Comparison with classical cooling schedules and simulated annealing

In addition to the numerical experiments of Sect. 5 we performed a computational study
comparing the interacting-particle algorithm with our meta-control methodology, the inter-
acting-particle algorithm with two classical cooling schedules, and SA with the same two
classical cooling schedules. Thus in this section we compare five algorithms to each other
on test problems from Sect. 5. To denote the temperature parameter of SA at iteration τ we
again use γτ . As classical cooling schedules we employ the exponential cooling schedule
and logarithmic cooling schedule which also appear in the numerical experiments of [20].
We use the following parameter settings for these schedules

Exponential Cooling Schedule [24]

γτ = γ0µ
τ

γ0 = 1 and µ = 0.99

Logarithmic Cooling Schedule [24]

γτ = γ0

ln(τ + 1)

γ0 = 1.

For the meta-control methodology we use the control criterion in (19) with ω3 = 1. This
control objective and parameter setting are chosen because in Sect. 5 they showed consis-
tently good results for the test problems. We set the initial temperature to γ0 = 1 and the
maximum and minimum allowed fractional changes in temperature are εmin = −0.01 and
εmax = 0.01. With these parameters the temperature update of the meta-control methodology
is akin to the exponential cooling schedule but we also allow heating.

For the interacting-particle algorithm with classical cooling schedules and meta-control
methodology we set the number of particles N = 250. The number of particles in this section
is much less than the number of particles of the previous section. In Sect. 5 our aim was to
investigate the behavior of the interacting-particle algorithm with different parameter settings
and we wanted to minimize the affects of the number of particles in our observations. Thus in
Sect. 5 we set N to large values. In the numerical experiments of this section we reduce N to
250 because in [13] this number of particles was used in comparing the interacting-particle
algorithm with SA.

In summary we apply five different algorithms instances given as,

1. Interacting-particle algorithm with N = 250 and ετ = K (Fτ ) calculated by the meta-
control methodology using control objective (19) with ω3 = 1, εmin = −0.01 and
εmax = 0.01.

2. Interacting-particle algorithm with N = 250 and exponential cooling schedule i.e. ετ =
K (Fτ ) = −0.01.
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3. Interacting-particle algorithm with N = 250 and logarithmic cooling schedule i.e. ετ =
K (Fτ ) = ln(τ )

ln(τ+1)
− 1.

4. SA with exponential cooling schedule i.e. γτ = 0.99τ .
5. SA with logarithmic cooling schedule i.e. γτ = 1

ln(τ+1)
.

For this comparison study we chose the 20 dimensional centered and shifted sinusoi-
dal problems, 10 dimensional Michalewicks problem and 10 dimensional Shekel’s foxholes
problem. The sinusoidal functions are chosen because they also appeared in the previous
comparison studies of [13] and [20]. The other two functions Shekel’s foxholes and Mic-
halewicks problem are used as they were shown to be the hardest problems of Sect. 5.

We do 50 independent runs for all of the five algorithms on four different problems. We stop
each run when the maximum number of 1,000 iterations is reached for the interacting-particle
algorithm and when 250,000 iterations is reached for SA. The interacting-particle algorithm
uses N = 250 function evaluations per iteration while SA uses 1 function evaluation per
iteration thus the maximum number of function evaluations for all of the five algorithms
equals 250,000. To compare the algorithms we plot the incumbent normalized function value
versus the number of function evaluations where we normalize using the global minima f ∗
of the functions and the worst value observed fw . Using the normalized function value scales
the values between 0 and 1 for all of the four test problems. We average the results over the
50 independent runs for each algorithm and test problem.

In Figs. 7–10 we plot the incumbent normalized function values versus the number of func-
tion evaluations of the five algorithms on the four test problems averaged over 50 independent
runs. We can see that the interacting-particle algorithm with classical cooling schedules and
meta-control methodology performs better than SA in all of the test problems. Because SA
is doing one function evaluation per iteration the incumbent objective function value drops
quickly however SA is more likely to get stuck in a local optima thus the average incumbent
solution over 50 runs does not reach zero in any of the test functions. The average final out-
come of the interacting-particle algorithm with classical cooling schedules is better than SA
in all of the tests which is also consistent with the findings in [13] where the interacting-parti-
cle algorithm was numerically shown to be better than SA. As our numerical results suggest
the meta-control methodology clearly brings a benefit to the interacting-particle algorithm.
With a fluctuating temperature the particles achieve better function values.

Fig. 7 Average incumbent
normalized function value over
50 independent runs for the
20-dimensional centered
sinusoidal problem using the five
algorithms
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Fig. 8 Average incumbent
normalized function value over
50 independent runs for the
20-dimensional centered
sinusoidal problem using the five
algorithms
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Fig. 9 Average incumbent
normalized function value over
50 independent runs for the
10-dimensional Michalewicks
problem using the five algorithms
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Finally we report the CPU time needed to compute the function K (Fτ ) by the meta-control
methodology and compare it to the CPU time spend doing N = 250 function evaluations.
We average the results from 1,000 iterations of the 50 independent runs. The times are for a
Pentium 4 processor with 512 RAM.

The CPU time of the meta-control methodology is only affected by the dimension of the
problem due to the fact that in higher dimensions we have more polynomials in our ortho-
normal basis so the number of parameters to estimate for the control problem increases.
While the CPU time of the meta-control methodology is much higher than the CPU time of
the function evaluations for these four simple functions, the CPU time of the meta-control
methodology is independent of the complexity of the objective function because it does not
include any function evaluations. Thus for problems whose objective function evaluations
take longer CPU times, we expect the extra computation for the meta-control methodology
to be overshadowed by the N function evaluations (Table 1).
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Fig. 10 Average incumbent
normalized function value over
50 independent runs for the
10-dimensional Shekel’s foxholes
problem using the five algorithms
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Table 1 Average CPU times for
the meta-control methodology
and N = 250 function
evaluations

Meta-control 250-Function
methodology evaluations

Centered sinusoidal 1.943 0.0011
Shifted sinusoidal 1.95 0.0012
Michalewicks 0.734 0.00078
Shekel’s foxholes 0.725 0.00015

7 Conclusion and future research

We have implemented a meta-control methodology for determining the temperature param-
eter of the interacting-particle algorithm. Our meta-control approach regards the interacting-
particle algorithm as a discrete dynamical system which evolves with the samplings of the
N -particle mechanisms. The p.d.f. of the particle’s locations is considered as the state of
the system and the evolution of this p.d.f. depends on the temperature parameter through the
N -particle selection mechanism. By approximating the p.d.f. with a sequence of orthonormal
polynomials we obtained an optimal control problem which has the fractional change in the
temperature as a control variable.

In order to solve this control problem we have implemented a perturbation method which
gave us a discrete quadratic optimal control problem. We estimated the parameters of the opti-
mal control problem using the observations coming from the interacting-particle algorithm.
Solving the control problem provides feedback on how to set the temperature parameter in
order to optimize the performance of the samplings for the next Tc iterations.

Our numerical tests were carried out with two choices of objective criterion for the optimal
control problem. While some of the problems do not show sensitivity to the weights in the
control objective, with more difficult problems we obtained better results by considering the
deviations from the uniform distribution in our criteria.

Clearly the performance of the meta-control methodology depends on the objective crite-
rion. However, the methodology is not limited to the two control objectives which we used
in our numerical tests. The performance of the methodology can be improved by designing
more effective and efficient objective criterion. We leave this issue open for future research.
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Another research direction is to consider parameterized exploration kernels and to apply the
meta-control methodology to obtain feedback on the parameters of the exploration kernel.

Finally our comparison experiments indicate that there is a benefit in using the meta-
control methodology to set the temperature parameter of the interacting-particle algorithm.
For all of the four test problems of the comparison experiments we obtained consistently
satisfying results for the meta-control methodology.

Acknowledgements This research was supported in part by National Science Foundation under the grant
DMI-0244286.

Appendix A

The Control Problem 2 requires the parameters �(τ) = {C1, C2, D1(t), D2(t) for t =
0, . . . , Tc}. The parameter estimation step of the procedure for function K (Fτ ) uses the
historical information Fτ supplied by the interacting-particle algorithm in estimating these
matrices. We can summarize the operations done by this step in a pseudo code form as
follows,
Parameter estimation:

Step 1: Given yτ and ŷτ estimate the new state of the interacting-particle algorithm c(τ )

and ĉ(τ ) using (3) and (4).
Step 2: Using c(τ ) and ĉ(τ ) estimate the matrix A.
Step 3: Using f (yτ ), f (ŷτ ), c(τ ) and ĉ(τ ) estimate the vector F .
Step 4: Set m̄(0) = c(τ ) and γ̄ (0) = γτ−1.
Step 5: For t = 0 to Tc

Step 5.1: Let γ̄ (t+1) = (1+ ε̄(t))γ̄ (t). Using ŷτ and f (ŷτ ) estimate the entries of
the matrices B, �γ+B, �γ−B, �ε+B, �ε−B and the vector p at γ̄ (t +1).

Step 5.2: Estimate D1(t) and D2(t) according to Eqs. 22. Calculate m̄(t+1) accord-
ing to Eq. 20.

Step 6: Using m̄(Tc + 1) and γ̄ (Tc + 1) estimate C1 and C2 using Eqs. 25. Send �(τ) =
{C1, C2, D1(t), D2(t) for t = 0, . . . , Tc} to the optimal control problem.

In Step 1 we obtain the particle locations yτ and ŷτ and estimate the current states c(τ )

and ĉ(τ ) of the interacting-particle algorithm according to the Eq. 3. These states are used
to estimate the matrix A in Step 2. The matrix A characterizes the change in the vector m(t)
due to N -particle exploration step; it relates the vector m(t) to m̂(t + 1) (Eq. 5). Using c(τ )

and ĉ(τ ) we estimate a matrix A such that

A = arg min
W
‖ W c(τ )− ĉ(τ ) ‖ (32)

where ‖ · ‖ denotes the l2 norm. We formulate this task as a least squares problem (see
Appendix B). In fact, A by definition (6) stays constant for all τ . After some iterations we
may choose not to update this matrix to reduce the computational effort.

The vector F estimated in Step 3 shows how the average function value of the particles
changes with the vector c(τ ), c.f. (15). Given the latest function values of particles at loca-
tions yτ and ŷτ , f (yτ ) and f (ŷτ ) we estimate the average function values fτ and f̂τ using
(14). Then we solve a least squares problem and set

F = arg min
v∈RQ
‖c(τ )v − fτ‖ + ‖ĉ(τ )v − f̂τ‖. (33)
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The main goal of Step 5 is to estimate D1(t) and D2(t) for t = 0, . . . , Tc. This requires
estimation of matrices B, �γ+B, �γ−B, �ε+B, �ε−B (cf. 22) and the vector p, thus in Step
5.1 these matrices are computed.

The matrix B characterizes the affect of N -particle selection mechanism on m(t), see Eq. 7.
In order to estimate the matrix B (γ̄ (t + 1)) for γ̄ (t+1) = (1+ ε̄(t)) γ̄ (t), t = 0, . . . , Tc we
use the latest intermediate particle locations and the corresponding function values at these
locations, i.e. ŷτ and f (ŷτ ). For each t = 0, . . . Tc we do the same calculations outlined
below.

Assume the temperature γτ equals γ̄ (t + 1) at iteration τ . The N -particle selection mech-
anism moves the particle i from location ŷi

τ to the location ŷ j
τ with probability s j (γ̄ (t + 1))

and the normalizing term of s j (γ̄ (t + 1)) equals
∑N

k=1 G γ̄ (t+1)(ŷk
τ+t ) which we denote with

Z(γ̄ (t+1)). Therefore, if the N -particle mechanism is implemented at temperature γ̄ (t+1),
with probability s j (γ̄ (t+1)) we expect the location ŷ j

τ to be selected and the αth orthonormal

polynomial takes the value Pα(ŷ j
τ ) at this location. An unbiased estimator of cα(τ + 1) is

E (cα(τ + 1)|Fτ ) =
N∑

j=1

s j (γ̄ (t + 1))Pα(ŷ j
τ ). (34)

Let E (c(τ + 1)) be the expected c(τ +1) if the temperature equals γ̂ (t+1), as estimated
using (34). We know by Eq. 7 that

E (c(τ + 1)) = B(γ̄ (t + 1))ĉ(τ )

Z(γ̄ (t + 1))
. (35)

With known E (c(τ + 1)) and Z(γ (t + 1)), we compute the matrix B(γ̂ (t+1)) by minimiz-
ing

‖ B(γ̄ (t + 1))ĉ(τ )− Z(γ̄ (t + 1))E (c(τ + 1)) ‖ . (36)

The minimization is once again modeled as a least squares problem (Appendix B).
The other matrices �γ+B, �γ−B, �ε+B and �ε−B are the right and left partial deriva-

tives of the entries of matrix B with respect to γ and ε. In order to calculate these matrices
at temperatures γ̄ (t + 1) = (1+ ε̄(t)) γ̄ (t), t = 0, . . . , Tc we do similar operations as in
the calculation of the matrix B. Below we only discuss the estimation of �+γ B for any t in
details; the calculations for the other three matrices involve the analogous operations.

Let γ̄+(t + 1) = (1+ ε̄(t)) (γ̄ (t)+ uγ ) be the temperature value when γ̄ (t) is increased
by infinitesimal amount uγ > 0. Using Eq. 34 we estimate expected vector c(τ + 1) if
the temperature equals γ̄+(t + 1) at the N -particle selection mechanism. We denote this
expectation with E

(
c+(τ + 1)

)
. In addition we have the normalizing term Z(γ̄+(t + 1)) =∑N

k=1 G γ̄+(t+1)(ŷk
τ+t ). We first estimate a matrix B(γ̄+(t + 1)) by minimizing

‖ B(γ̄+(t + 1))ĉ(τ )− Z(γ̄+(t + 1))E
(
c+(τ + 1)

) ‖, (37)

which is again a least squares problem. This gives us the matrix B(γ̄+(t + 1)). To estimate
�γ+B(γ̄ (t + 1)) we set

�γ+B(γ̄ (t + 1)) = B(γ̄+(t + 1))− B(γ̄ (t + 1))

uγ

(38)

where B(γ̄ (t + 1)) comes from expression (36). For the other three matrices we do the
calculations in (34), (37) and (38) with temperatures γ̄−(t + 1) = (1+ ε̄(t)) (γ̄ (t) − uγ ),
γ̄ ε+(t + 1) = (1+ ε̄(t)+ uε) γ̄ (t) and γ̄ ε−(t + 1) = (1+ ε̄(t)− uε) γ̄ (t).

123



352 J Glob Optim (2009) 43:329–356

The vector p is a part of the normalizing terms Z(γ̂ (t +1)) for t = 1, . . . , Tc. Given ĉ(τ )

and B(γ̄ (t + 1)) from our previous calculations we let p to be

p = arg min
v∈RQ

Tc∑
t=0

‖ĉ(τ )T B(γ̄ (t + 1))T v − Z(γ̄ (t + 1))‖.

In Step 5.2 we estimate D1(t) and D2(t) according to Eqs. 22. Finally in Step 6 we cal-
culate C1 and C2 according to Eqs. 25. All the parameters are sent to the control problem to
obtain a feedback on the temperature. In the following section we implement the function
K (Fτ ) defined with our meta-control methodology on test problems.

Appendix B

Suppose numerical values for two sets of Q dimensional vectors are given, qs=(q1
s , . . . , q Q

s )T

and ps = (p1
s , . . . , pQ

s )T for s = 1, . . . , z. We would like to estimate a Q × Q symmetric
matrix W such that it satisfies

Wqs = ps,

for all s = 1, . . . , z. We use a least squares approach and consider this problem as a minimi-
zation problem; we would like W to minimize

z∑
s=1

‖Wqs − ps‖ ,

where ‖ · ‖ denotes the l2 norm. We structure this minimization problem as a standard least
squares problem by representing the entries of matrix W as a vector. The decision variable
becomes the w = Q(Q + 1)/2 dimensional vector such that

v = (W11, W12, . . . , W1K , W22, . . . , W2K , . . . , WK K )T .

The number of variables to estimate is reduced from Q2 to w because of the symmetry of
the matrix W .

From the vectors qs, s = 1, . . . , z we construct a (zQ)× w matrix L such that

L =

⎛
⎜⎜⎜⎝

L1

L2
...

Lz

⎞
⎟⎟⎟⎠ .

where Ls , s = 1, . . . , z are Q × w matrices defined as

Ls =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1
s q2

s q3
s . . . q Q

s 0 0 . . . 0 0 . . . 0 0 . . . 0
0 q1

s 0 . . . 0 q2
s q3

s . . . q Q
s 0 . . . 0 0 . . . 0

0 0 q1
s . . . 0 0 q2

s . . . 0 q3
s . . . q Q

s 0 . . . 0
...

...
. . .

...
...

. . .
...

. . .
...

...

0 0 . . . . . . q1
s 0 . . . . . . q2

s 0 . . . q3
s 0 . . . q Q

s

⎞
⎟⎟⎟⎟⎟⎟⎠

for s = 1, . . . , z.

Using the vector ps, s = 1, . . . , z we construct a vector r where

r =
(

p1
1, . . . , pQ

1 , p1
2, . . . , pQ

2 , . . . , p1
z , . . . , pQ

z

)T
.
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Next we let

v∗ = arg min
v∈Rw
‖Lv − r‖,

and the vector v∗ provides the optimal matrix W .

Appendix C

Average test results for meta-control methodology using the objective criterion in (18), with
differing ω1 and ω2

Test function (dimension) (ω1, ω2) N Avg g∗25 Avg g∗100 Avg g∗200

Centered sinusodial (10) (1, 0) 1,000 0.6144 0.00653 0.00479
(0.75, 0.25) 1,000 0.636613 0.00472 0.004583
(0.5, 0.5) 1,000 0.65007 0.00551 0.004717
(0.25, 0.75) 1,000 0.67329 0.67329 0.69349

Shifted sinusodial (10) (1, 0) 1,250 0.44755 0.00472 0.00472
(0.75, 0.25) 1,250 0.40755 0.00485 0.004765
(0.5, 0.5) 1,250 0.500963 0.21401 0.213623
(0.25, 0.75) 1,250 0.47938 0.47938 0.47938

Michalewicks (5) (1, 0) 2,000 0.423315 0.04379 0.04108
(0.75, 0.25) 2,000 0.41548 0.0076 0.00629
(0.5, 0.5) 2,000 0.36463 0.02518 0.018273
(0.25, 0.75) 2,000 0.379493 0.02715 0.024427

Michalewicks (10) (1, 0) 5,000 0.39831 0.30245 0.301675
(0.75, 0.25) 5,000 0.36228 0.21312 0.21083
(0.5, 0.5) 5,000 0.429697 0.4297 0.61291
(0.25, 0.75) 5,000 0.47938 0.47938 0.656757

Levy and Montolva (10) (1, 0) 1,000 0.027285 0.00467 0.004665
(0.75, 0.25) 1,000 0.02717 0.00477 0.00477
(0.5, 0.5) 1,000 0.02335 0.02112 0.01842
(0.25, 0.75) 1,000 0.067647 0.06765 0.067647

Rosenbrock (10) (1, 0) 1,000 0.00402 0.00402 0.00402
(0.75, 0.25) 1,000 0.00447 0.00447 0.00447
(0.5, 0.5) 1,000 0.004473 0.00447 0.004473
(0.25, 0.75) 1,000 0.00416 0.00416 0.00416

Griewank (10) (1, 0) 1,000 0.179315 0.05081 0.044015
(0.75, 0.25) 1,000 0.013197 0.00444 0.00444
(0.5, 0.5) 1,000 0.012367 0.00418 0.004183
(0.25, 0.75) 1,000 0.012713 0.0042 0.004203

Pavianni (10) (1, 0) 1,000 0.006285 0.00488 0.00488
(0.75, 0.25) 1,000 0.0064 0.00469 0.004693
(0.5, 0.5) 1,000 0.00524 0.00476 0.00476
(0.25, 0.75) 1,000 0.014187 0.01419 0.014187

Shekel’s foxholes (10) (1, 0) 5,000 0.990673 0.86153 0.861218
(0.75, 0.25) 5,000 0.990668 0.77497 0.774755
(0.5, 0.5) 5,000 0.990946 0.69423 0.694485
(0.25, 0.75) 5,000 0.990287 0.58976 0.588094

Schewel (10) (1, 0) 1,000 0.25803 0.05802 0.055175
(0.75, 0.25) 1,000 0.273747 0.06531 0.06257
(0.5, 0.5) 1,000 0.259227 0.05038 0.045507
(0.25, 0.75) 1,000 0.449793 0.44979 0.449793
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Test function (dimension) (ω1, ω2) N Avg g∗25 Avg g∗100 Avg g∗200

Salomon (10) (1, 0) 1,000 0.074583 0.00634 0.006243
(0.75, 0.25) 1,000 0.073377 0.00545 0.00422
(0.5, 0.5) 1,000 0.076573 0.00738 0.005993
(0.25, 0.75) 1,000 0.273747 0.00653 0.006257

Centered sinusodial (20) (1, 0) 2,000 0.994671 0.01685 0.004649
(0.75, 0.25) 2,000 0.993314 0.01728 0.004786
(0.5, 0.5) 2,000 0.995575 0.07968 0.058229
(0.25, 0.75) 2,000 0.994828 0.45331 0.645031

Shifted sinusodial (20) (1, 0) 2,500 0.97723 0.51412 0.4959
(0.75, 0.25) 2,500 0.988501 0.72092 0.836949
(0.5, 0.5) 2,500 0.959941 0.74705 0.747045
(0.25, 0.75) 2,500 0.989539 0.7579 0.757895

Ackley (20) (1, 0) 2,000 0.451175 0.07252 0.07005
(0.75, 0.25) 2,000 0.430515 0.04083 0.034306
(0.5, 0.5) 2,000 0.420946 0.04686 0.039612
(0.25, 0.75) 2,000 0.426518 0.04953 0.038898

Levy and Montolva (20) (1, 0) 2,000 0.022215 0.00469 0.004685
(0.75, 0.25) 2,000 0.026747 0.00482 0.004816
(0.5, 0.5) 2,000 0.026723 0.00554 0.004862
(0.25, 0.75) 2,000 0.079014 0.04194 0.041937

Rosenbrock (20) (1, 0) 2,000 0.00478 0.00478 0.00478
(0.75, 0.25) 2,000 0.004584 0.00458 0.004584
(0.5, 0.5) 2,000 0.004336 0.00434 0.004336
(0.25, 0.75) 2,000 0.004294 0.00429 0.004294

Griewank (20) (1, 0) 2,000 0.01055 0.00497 0.004975
(0.75, 0.25) 2,000 0.010011 0.00495 0.004954
(0.5, 0.5) 2,000 0.009455 0.00494 0.004935
(0.25, 0.75) 2,000 0.010034 0.00495 0.004952

Salomon (20) (1, 0) 2,000 0.102595 0.01345 0.010395
(0.75, 0.25) 2,000 0.09511 0.0132 0.008655
(0.5, 0.5) 2,000 0.11357 0.01303 0.01005
(0.25, 0.75) 2,000 0.118845 0.01268 0.011115

Appendix D

Average test results for meta-control methodology using the objective criterion in (19), with
differing ω3

Test function (dimension) (ω3) N Avg g∗25 Avg g∗100 Avg g∗200

Centered sinusoidal (10) (0.25) 1,000 0.588157 0.005107 0.004243
(0.5) 1,000 0.67146 0.006913 0.004687
(0.75) 1,000 0.681357 0.00497 0.004853
(1) 1,000 0.748223 0.00834 0.004723

Shifted sinusoidal (10) (0.25) 1,250 0.39391 0.005293 0.004783
(0.5) 1,250 0.437413 0.005323 0.00448
(0.75) 1,250 0.432497 0.006087 0.004383
(1) 1,250 0.40904 0.005197 0.004853

Michalewicks (5) (0.25) 2,000 0.62922 0.032723 0.028007
(0.5) 2,000 0.424303 0.032127 0.028237
(0.75) 2,000 0.351807 0.013707 0.009533
(1) 2,000 0.377197 0.022827 0.017397

Michalewicks (10) (0.25) 5,000 0.410933 0.294833 0.29416
(0.5) 5,000 0.37869 0.28454 0.283073
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Test function (dimension) (ω3) N Avg g∗25 Avg g∗100 Avg g∗200

(0.75) 5,000 0.401313 0.286197 0.276813
(1) 5,000 0.39489 0.10933 0.10661

Levy and Montolvo (10) (0.25) 1,000 0.028517 0.004683 0.004683
(0.5) 1,000 0.023823 0.004713 0.004713
(0.75) 1,000 0.029903 0.00487 0.00487
(1) 1,000 0.030783 0.00495 0.00495

Rosenbrock (10) (0.25) 1,000 0.004263 0.004263 0.004263
(0.5) 1,000 0.004447 0.004447 0.004447
(0.75) 1,000 0.00425 0.00425 0.00425
(1) 1,000 0.00441 0.00441 0.00441

Griewank (0.25) 1,000 0.013457 0.00462 0.00462
(0.5) 1,000 0.01328 0.004313 0.004313
(0.75) 1,000 0.01347 0.004673 0.004673
(1) 1,000 0.0126 0.00469 0.00469

Pavianni (10) (0.25) 1,000 0.00648 0.004773 0.004773
(0.5) 1,000 0.006053 0.00483 0.00483
(0.75) 1,000 0.006463 0.004887 0.004887
(1) 1,000 0.006963 0.004803 0.004803

Shekel’s foxholes (10) (0.25) 5,000 0.990903 0.825623 0.824247
(0.5) 5,000 0.991333 0.865898 0.829973
(0.75) 5,000 0.991673 0.895638 0.807884
(1) 5,000 0.991318 0.781973 0.78015

Schewel (10) (0.25) 1,000 0.26681 0.078167 0.075293
(0.5) 1,000 0.234563 0.063987 0.061277
(0.75) 1,000 0.265193 0.066923 0.06415
(1) 1,000 0.253187 0.041027 0.0382

Salomon (10) (0.25) 1,000 0.074697 0.00642 0.00631
(0.5) 1,000 0.07433 0.007557 0.006107
(0.75) 1,000 0.072503 0.006323 0.005157
(1) 1,000 0.07095 0.00627 0.006147

Centered sinusoidal (20) (0.25) 2,000 0.995217 0.0762 0.00485
(0.5) 2,000 0.997077 0.021083 0.004663
(0.75) 2,000 0.979835 0.02951 0.00437
(1) 2,000 0.997185 0.05108 0.00483

Shifted sinusoidal (20) (0.25) 2,500 0.980479 0.579473 0.438487
(0.5) 2,500 0.978902 0.567423 0.409863
(0.75) 2,500 0.981065 0.741271 0.369507
(1) 2,500 0.982633 0.392905 0.220915

Ackley (20) (0.25) 2,000 0.417147 0.05927 0.052067
(0.5) 2,000 0.4145 0.051427 0.046753
(0.75) 2,000 0.384613 0.043467 0.03939
(1) 2,000 0.381483 0.031627 0.02629

Levy and Montolvo (20) (0.25) 2,000 0.026053 0.004903 0.004903
(0.5) 2,000 0.023623 0.00483 0.00483
(0.75) 2,000 0.025987 0.00486 0.00486
(1) 2,000 0.07095 0.00427 0.004147

Rosenbrock (20) (0.25) 2,000 0.004113 0.004113 0.004113
(0.5) 2,000 0.004597 0.004597 0.004597
(0.75) 2,000 0.00413 0.00413 0.00413
(1) 2,000 0.00451 0.00451 0.00451

Griewank (20) (0.25) 2,000 0.008713 0.00493 0.00493
(0.5) 2,000 0.009863 0.00493 0.00493
(0.75) 2,000 0.00957 0.004957 0.004957
(1) 2,000 0.009583 0.004973 0.004973

Salomon (20) (0.25) 2,000 0.11487 0.013147 0.01019
(0.5) 2,000 0.102073 0.012607 0.010587
(0.75) 2,000 0.104337 0.013667 0.010607
(1) 2,000 0.10762 0.01164 0.008723
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